Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Since their emergence in 2018, speculative execution attacks have proven difficult to fully prevent without substantial performance overhead. This is because most mitigations hurt modern processors' speculative nature, which is essential to many optimization techniques. To address this, numerous scanners have been developed to identify vulnerable code snippets (speculative gadgets) within software applications, allowing mitigations to be applied selectively and thereby minimizing performance degradation.

In this paper, we show that existing speculative gadget scanners lack accuracy, often misclassifying gadgets due to limited modeling of timing properties. Instead, we identify another fundamental condition intrinsic to all speculative attacks—the timing requirement as a race condition inside the gadget. Specifically, the attacker must optimize the race condition between speculated authorization and secret leakage to successfully exploit the gadget. Therefore, we introduce GadgetMeter, a framework designed to quantitatively gauge the exploitability of speculative gadgets based on their timing property. We systematically explore the attacker's power to optimize the race condition inside gadgets (windowing power). A Directed Acyclic Instruction Graph is used to model timing conditions and static analysis and runtime testing are combined to optimize attack patterns and quantify gadget vulnerability. We use GadgetMeter to evaluate gadgets in a wide range of software, including six real-world applications and the Linux kernel. Our result shows that GadgetMeter can accurately identify exploitable speculative gadgets and quantify their vulnerability level, identifying 471 gadgets reported by GadgetMeter works as unexploitable.

View More Papers

Time-varying Bottleneck Links in LEO Satellite Networks: Identification, Exploits,...

Yangtao Deng (Tsinghua University), Qian Wu (Tsinghua University), Zeqi Lai (Tsinghua University), Chenwei Gu (Tsinghua University), Hewu Li (Tsinghua University), Yuanjie Li (Tsinghua University), Jun Liu (Tsinghua University)

Read More

YuraScanner: Leveraging LLMs for Task-driven Web App Scanning

Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Understanding Miniapp Malware: Identification, Dissection, and Characterization

Yuqing Yang (The Ohio State University), Yue Zhang (Drexel University), Zhiqiang Lin (The Ohio State University)

Read More