Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Since their emergence in 2018, speculative execution attacks have proven difficult to fully prevent without substantial performance overhead. This is because most mitigations hurt modern processors' speculative nature, which is essential to many optimization techniques. To address this, numerous scanners have been developed to identify vulnerable code snippets (speculative gadgets) within software applications, allowing mitigations to be applied selectively and thereby minimizing performance degradation.

In this paper, we show that existing speculative gadget scanners lack accuracy, often misclassifying gadgets due to limited modeling of timing properties. Instead, we identify another fundamental condition intrinsic to all speculative attacks—the timing requirement as a race condition inside the gadget. Specifically, the attacker must optimize the race condition between speculated authorization and secret leakage to successfully exploit the gadget. Therefore, we introduce GadgetMeter, a framework designed to quantitatively gauge the exploitability of speculative gadgets based on their timing property. We systematically explore the attacker's power to optimize the race condition inside gadgets (windowing power). A Directed Acyclic Instruction Graph is used to model timing conditions and static analysis and runtime testing are combined to optimize attack patterns and quantify gadget vulnerability. We use GadgetMeter to evaluate gadgets in a wide range of software, including six real-world applications and the Linux kernel. Our result shows that GadgetMeter can accurately identify exploitable speculative gadgets and quantify their vulnerability level, identifying 471 gadgets reported by GadgetMeter works as unexploitable.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20082 ) )

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More

Privacy-Preserving Data Deduplication for Enhancing Federated Learning of Language...

Aydin Abadi (Newcastle University), Vishnu Asutosh Dasu (Pennsylvania State University), Sumanta Sarkar (University of Warwick)

Read More

Eclipse Attacks on Monero's Peer-to-Peer Network

Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Read More

QMSan: Efficiently Detecting Uninitialized Memory Errors During Fuzzing

Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)