Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

An Unrestricted File Upload (UFU) vulnerability is a critical security threat that enables an adversary to upload her choice of a forged file to a target web server. This bug evolves into an Unrestricted Executable File Upload (UEFU) vulnerability when the adversary is able to conduct remote code execution of the uploaded file via triggering its URL. We design and implement FUSE, the first penetration testing tool designed to discover UFU and UEFU vulnerabilities in server-side PHP web applications. The goal of FUSE is to generate upload requests; each request becomes an exploit payload that triggers a UFU or UEFU vulnerability. However, this approach entails two technical challenges: (1) it should generate an upload request that bypasses all content-filtering checks present in a target web application; and (2) it should preserve the execution semantic of the resulting uploaded file. We address these technical challenges by mutating standard upload requests with carefully designed mutation operations that enable the bypassing of content- filtering checks and do not tamper with the execution of uploaded files. FUSE discovered 30 previously unreported UEFU vulnerabilities, including 15 CVEs from 33 real-world web applications, thereby demonstrating its efficacy in finding code execution bugs via file uploads.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 39 ) ) ) [post__not_in] => Array ( [0] => 5839 ) )

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples

Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing Hua University), Tsung-Yi Ho (National Tsing Hua University), Yier Jin (University of Florida)

Read More

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)