Wenqiang Li (State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences; Department of Computer Science, the University of Georgia, USA; School of Cyber Security, University of Chinese Academy of Sciences; Department of Electrical Engineering and Computer Science, the University of Kansas, USA), Le Guan (Department of Computer Science, the University of Georgia, USA), Jingqiang Lin (School of Cyber Security, University of Science and Technology of China), Jiameng Shi (Department of Computer Science, the University of Georgia, USA), Fengjun Li (Department of Electrical Engineering and Computer Science, the University of Kansas, USA)

Finding bugs in microcontroller (MCU) firmware is challenging, even for device manufacturers who own the source code. The MCU runs different instruction sets than x86 and exposes a very different development environment. This invalidates many existing sophisticated software testing tools on x86. To maintain a unified developing and testing environment, a straightforward way is to re-compile the source code into the native executable for a commodity machine (called rehosting). However, ad-hoc re-hosting is a daunting and tedious task and subject to many issues (library-dependence, kernel-dependence and hardware-dependence). In this work, we systematically explore the portability problem of MCU software and propose para-rehosting to ease the porting process. Specifically, we abstract and implement a portable MCU (PMCU) using the POSIX interface. It models common functions of the MCU cores. For peripheral specific logic, we propose HAL-based peripheral function replacement, in which high-level hardware functions are replaced with an equivalent backend driver on the host. These backend drivers are invoked by well-designed para-APIs and can be reused across many MCU OSs. We categorize common HAL functions into four types and implement templates for quick backend development. Using the proposed approach, we have successfully rehosted nine MCU OSs including the widely deployed Amazon FreeRTOS, ARM Mbed OS, Zephyr and LiteOS. To demonstrate the superiority of our approach in terms of security testing, we used off-the-shelf dynamic analysis tools (AFL and ASAN) against the rehosted programs and discovered 28 previously-unknown bugs, among which 5 were confirmed by CVE and the other 19 were confirmed by vendors at the time of writing.

View More Papers

Towards Measuring Supply Chain Attacks on Package Managers for...

Ruian Duan (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Ranjita Pai Kasturi (Georgia Institute of Technology), Ryan Elder (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

SquirRL: Automating Attack Analysis on Blockchain Incentive Mechanisms with...

Charlie Hou (CMU, IC3), Mingxun Zhou (Peking University), Yan Ji (Cornell Tech, IC3), Phil Daian (Cornell Tech, IC3), Florian Tramèr (Stanford University), Giulia Fanti (CMU, IC3), Ari Juels (Cornell Tech, IC3)

Read More

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More