Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

The proliferation of consumer IoT products in our daily lives has raised the need for secure device authentication and access control.
Unfortunately, these resource-constrained devices typically use token-based authentication, which is vulnerable to token compromise attacks that allow attackers to impersonate the devices and perform malicious operations by stealing the access token.
Using hardware fingerprints to secure their authentication is a promising way to mitigate these threats.
However, once attackers have stolen some hardware fingerprints (e.g., via MitM attacks), they can bypass the hardware authentication by training a machine learning model to mimic fingerprints or reusing these fingerprints to craft forge requests.

In this paper, we present MCU-Token, a secure hardware fingerprinting framework for MCU-based IoT devices even if the cryptographic mechanisms (e.g., private keys) are compromised. MCU-Token can be easily integrated with various IoT devices by simply adding a short hardware fingerprint-based token to the existing payload. To prevent the reuse of this token, we propose a message mapping approach that binds the token to a specific request via generating the hardware fingerprints based on the request payload. To defeat the machine learning attacks, we mix the valid fingerprints with poisoning data so that attackers cannot train a usable model with the leaked tokens. MCU-Token can defend against armored adversary who may replay, craft, and offload the requests via MitM or use both hardware (e.g., use identical devices) and software (e.g., machine learning attacks) strategies to mimic the fingerprints. The system evaluation shows that MCU-Token can achieve high accuracy (over 97%) with a low overhead across various IoT devices and application scenarios.

View More Papers

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

Space-Domain AI Applications need Rigorous Security Risk Analysis

Alexandra Weber (Telespazio Germany GmbH), Peter Franke (Telespazio Germany GmbH)

Read More