Hossein Fereidooni (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Federated learning (FL) is a collaborative learning paradigm allowing multiple clients to jointly train a model without sharing their training data. However, FL is susceptible to poisoning attacks, in which the adversary injects manipulated model updates into the federated model aggregation process to corrupt or destroy predictions (untargeted poisoning) or implant hidden functionalities (targeted poisoning or backdoors). Existing defenses against poisoning attacks in FL have several limitations, such as relying on specific assumptions about attack types and strategies or data distributions or not sufficiently robust against advanced injection techniques and strategies and simultaneously maintaining the utility of the aggregated model.

To address the deficiencies of existing defenses, we take a generic and completely different approach to detect poisoning (targeted and untargeted) attacks. We present FreqFed, a novel aggregation mechanism that transforms the model updates (i.e., weights) into the frequency domain, where we can identify the core frequency components that inherit sufficient information about weights. This allows us to effectively filter out malicious updates during local training on the clients, regardless of attack types, strategies, and clients' data distributions. We extensively evaluate the efficiency and effectiveness of FreqFed in different application domains, including image classification, word prediction, IoT intrusion detection, and speech recognition. We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.

View More Papers

Merge/Space: A Security Testbed for Satellite Systems

M. Patrick Collins (USC Information Sciences Institute), Alefiya Hussain (USC Information Sciences Institute), J.P. Walters (USC Information Sciences Institute), Calvin Ardi (USC Information Sciences Institute), Chris Tran (USC Information Sciences Institute), Stephen Schwab (USC Information Sciences Institute)

Read More

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More