Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa)

An emerging trend in network security consists in the adoption of programmable switches for performing various security tasks in large-scale, high-speed networks. However, since existing solutions are tailored to specific tasks, they cannot accommodate a growing variety of ML-based security applications, i.e., security-focused tasks that perform targeted flow classification based on packet size or inter-packet frequency distributions with the help of supervised machine learning algorithms. We present FlowLens, a system that leverages programmable switches to efficiently support multi-purpose ML-based security applications. FlowLens collects features of packet distributions at line speed and classifies flows directly on the switches, enabling network operators to re-purpose this measurement primitive at run-time to serve a different flow classification task. To cope with the resource constraints of programmable switches, FlowLens computes for each flow a memory-efficient representation of relevant features, named ``flow marker''. Despite its small size, a flow marker contains enough information to perform accurate flow classification. Since flow markers are highly customizable and application-dependent, FlowLens can automatically parameterize the flow marker generation guided by a multi-objective optimization process that can balance their size and accuracy. We evaluated our system in three usage scenarios: covert channel detection, website fingerprinting, and botnet chatter detection. We find that very small markers enable FlowLens to achieve a 150 fold increase in monitoring capacity for covert channel detection with an accuracy drop of only 3% when compared to collecting full packet distributions.

View More Papers

Refining Indirect Call Targets at the Binary Level

Sun Hyoung Kim (Penn State), Cong Sun (Xidian University), Dongrui Zeng (Penn State), Gang Tan (Penn State)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping

Xiaoyu Cao (Duke University), Minghong Fang (The Ohio State University), Jia Liu (The Ohio State University), Neil Zhenqiang Gong (Duke University)

Read More

As Strong As Its Weakest Link: How to Break...

Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Read More