Tyler McDaniel (University of Tennessee, Knoxville), Jared M. Smith (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

BGP route leaks frequently precipitate serious disruptions to inter-domain routing. These incidents have plagued the Internet for decades while deployment and usability issues cripple efforts to mitigate the problem. Peerlock, introduced in 2016, addresses route leaks with a new approach. Peerlock enables filtering agreements between transit providers to protect their own networks without the need for broad cooperation or a trust infrastructure. We outline the Peerlock system and one variant, Peerlock-lite, and conduct live Internet experiments to measure their deployment on the control plane. Our measurements find evidence for significant Peerlock protection between Tier 1 networks in the peering clique, where 48% of potential Peerlock filters are deployed, and reveal that many other networks also deploy filters against Tier 1 leaks. To guide further deployment, we also quantify Peerlock’s impact on route leaks both at currently observed levels and under hypothetical future deployment scenarios via BGP simulation. These experiments reveal present Peerlock deployment restricts Tier 1 leak export to 10% or fewer networks for 40% of simulated leaks. Strategic additional Peerlock-lite deployment at all large ISPs (<1% of all networks), in tandem with Peerlock within the peering clique as deployed, completely mitigates about 80% of simulated Tier 1 route leaks.

View More Papers

[WITHDRAWN] First, Do No Harm: Studying the manipulation of...

Shubham Agarwal (Saarland University), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications...

Eunsoo Kim (KAIST), Dongkwan Kim (KAIST), CheolJun Park (KAIST), Insu Yun (KAIST), Yongdae Kim (KAIST)

Read More

SOK: An Evaluation of Quantum Authentication Through Systematic Literature...

Ritajit Majumdar (Indian Statistical Institute), Sanchari Das (University of Denver)

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More