Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua University), Yong Xie (Qinghai University)

IoT devices are often found vulnerable, i.e., untrusted inputs may trigger potential vulnerabilities and flow to sensitive operations in the firmware, which could cause severe damage. As such vulnerabilities are in general taint-style, a promising solution to find them is static taint analysis. However, existing solutions have limited efficiency and effectiveness. In this paper, we propose a new efficient and effective taint analysis solution, namely HermeScan, to discover such vulnerabilities, which utilizes reaching definition analysis (RDA) to conduct taint analysis and gets much fewer false negatives, false positives, and time costs. We have implemented a prototype of HermeScan and conducted a thorough evaluation on two datasets, i.e., one 0-day dataset with 30 latest firmware and one N-day dataset with 98 older firmware, and compared with two state-of-the art (SOTA) solutions, i.e., KARONTE and SaTC. In terms of effectiveness, HermeScan, SaTC, and KARONTE find 163, 32, and 0 vulnerabilities in the 0-day dataset respectively. In terms of accuracy, the true positive rates of HermeScan, SaTC, and KARONTE are 81%, 42%, and 0% in the 0-day dataset. In terms of efficiency, HermeScan is 7.5X and 3.8X faster than SaTC and KARONTE on average in finding 0-day vulnerabilities.

View More Papers

Random Spoofing Attack against Scan Matching Algorithm SLAM (Long)

Masashi Fukunaga (MitsubishiElectric), Takeshi Sugawara (The University of Electro-Communications)

Read More

LibAFL QEMU: A Library for Fuzzing-oriented Emulation

Romain Malmain (EURECOM), Andrea Fioraldi (EURECOM), Aurelien Francillon (EURECOM)

Read More

Towards Real-time Voice Interaction Data Collection Monitoring and Ambient...

Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More