Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua University), Yong Xie (Qinghai University)

IoT devices are often found vulnerable, i.e., untrusted inputs may trigger potential vulnerabilities and flow to sensitive operations in the firmware, which could cause severe damage. As such vulnerabilities are in general taint-style, a promising solution to find them is static taint analysis. However, existing solutions have limited efficiency and effectiveness. In this paper, we propose a new efficient and effective taint analysis solution, namely HermeScan, to discover such vulnerabilities, which utilizes reaching definition analysis (RDA) to conduct taint analysis and gets much fewer false negatives, false positives, and time costs. We have implemented a prototype of HermeScan and conducted a thorough evaluation on two datasets, i.e., one 0-day dataset with 30 latest firmware and one N-day dataset with 98 older firmware, and compared with two state-of-the art (SOTA) solutions, i.e., KARONTE and SaTC. In terms of effectiveness, HermeScan, SaTC, and KARONTE find 163, 32, and 0 vulnerabilities in the 0-day dataset respectively. In terms of accuracy, the true positive rates of HermeScan, SaTC, and KARONTE are 81%, 42%, and 0% in the 0-day dataset. In terms of efficiency, HermeScan is 7.5X and 3.8X faster than SaTC and KARONTE on average in finding 0-day vulnerabilities.

View More Papers

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

LARMix: Latency-Aware Routing in Mix Networks

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (KU Leuven), Claudia Diaz (KU Leuven)

Read More

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More