Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Supervised machine learning classifiers have been widely used for attack detection, but their training requires abundant high-quality labels. Unfortunately, high-quality labels are difficult to obtain in practice due to the high cost of data labeling and the constant evolution of attackers. Without such labels, it is challenging to train and deploy targeted countermeasures.

In this paper, we propose FARE, a clustering method to enable fine-grained attack categorization under low-quality labels. We focus on two common issues in data labels: 1) missing labels for certain attack classes or families; and 2) only having coarse-grained labels available for different attack types. The core idea of FARE is to take full advantage of the limited labels while using the underlying data distribution to consolidate the low-quality labels. We design an ensemble model to fuse the results of multiple unsupervised learning algorithms with the given labels to mitigate the negative impact of missing classes and coarse-grained labels. We then train an input transformation network to map the input data into a low-dimensional latent space for fine-grained clustering. Using two security datasets (Android malware and network intrusion traces), we show that FARE significantly outperforms the state-of-the-art (semi-)supervised learning methods in clustering quality/correctness. Further, we perform an initial deployment of FARE by working with a large e-commerce service to detect fraudulent accounts. With real-world A/B tests and manual investigation, we demonstrate the effectiveness of FARE to catch previously-unseen frauds.

View More Papers

Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton (University of Adelaide), Niels Samwel (Radboud University), Lejla Batina (Radboud University), Francesco Regazzoni (University of Amsterdam and ALaRI – USI), Markus Wagner (University of Adelaide), Yuval Yarom (University of Adelaide and Data61)

Read More

(Short) Spoofing Mobileye 630’s Video Camera Using a Projector

Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More