Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

With the proliferation of IoT devices, network device identification is essential for effective network management and security. Many exhibit performance degradation despite the potential of machine learning-based IoT device identification solutions. Degradation arises from the assumption of static IoT environments that do not account for the diversity of real-world IoT networks, as devices operate in various modes and evolve over time. In this paper, we evaluate current IoT device identification solutions using curated datasets and representative features across different settings. We consider key factors that affect real-world device identification, including modes of operation, spatio-temporal variations, and traffic sampling, and organise them into a set of attributes by which we can evaluate current solutions. We then use machine learning explainability techniques to pinpoint the key causes of performance degradation. This evaluation uncovers empirical evidence of what continuously identifies devices, provides valuable insights, and practical recommendations for network operators to improve their IoT device identification in operational deployments.

View More Papers

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More

Towards LLM-Assisted Vulnerability Detection and Repair for Open-Source 5G...

Rupam Patir (University at Buffalo), Qiqing Huang (University at Buffalo), Keyan Guo (University at Buffalo), Wanda Guo (Texas A&M University), Guofei Gu (Texas A&M University), Haipeng Cai (University at Buffalo), Hongxin Hu (University at Buffalo)

Read More

The Power of Words: A Comprehensive Analysis of Rationales...

Yusra Elbitar (CISPA Helmholtz Center for Information Security), Alexander Hart (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More