Wenhao Li (Shandong University), Jiahao Wang (Shandong University), Guoming Zhang (Shandong University), Yanni Yang (Shandong University), Riccardo Spolaor (Shandong University), Xiuzhen Cheng (Shandong University), Pengfei Hu (Shandong University)

Iris recognition is one of the most secure biometric methods due to the uniqueness and stability of iris patterns, as well as their resistance to forgery. Consequently, it is frequently used in high-security authentication scenarios. However, systems using Near-Infrared (NIR) sensors may expose the iris information of users, leading to significant privacy risks. Our research found that the electromagnetic (EM) emissions generated during data transmission of NIR sensors are closely related to iris data. Based on this observation, we propose EMIRIS, a method for reconstructing the iris information using EM side channels. By deconstructing the digital signal transmission format of the NIR sensors and the mapping mechanism of the iris data matrix, we can reconstruct iris information from EM signals and convert it into iris images. To improve the quality of the reconstructed iris, we model the denoising and restoration of iris texture details as a linear inverse problem and tailor a diffusion model to solve it. Extensive experimental evaluations show that EMIRIS can effectively reconstruct iris information from commercial iris recognition devices, achieving an average SSIM of 0.511 and an average FID of 7.25. Even more concerning, these reconstructed irises can effectively spoof the classical iris recognition model with an average success rate of 53.47% on more than 3,000 iris samples from 50 different users.

View More Papers

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More

Understanding Influences on SMS Phishing Detection: User Behavior, Demographics,...

Daniel Timko (California State University San Marcos), Daniel Hernandez Castillo (California State University San Marcos), Muhammad Lutfor Rahman (California State University San Marcos)

Read More

Towards Establishing a Systematic Security Framework for Next Generation...

Tolga O. Atalay (A2 Labs LLC), Tianyuan Yu (UCLA), Lixia Zhang (UCLA), Angelos Stavrou (A2 Labs LLC)

Read More

A Key-Driven Framework for Identity-Preserving Face Anonymization

Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Read More