Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

IoT devices and other embedded systems are increasingly equipped with cameras that can sense critical information in private spaces. The data security of these cameras, however, has hardly been scrutinized from the hardware design perspective. Our paper presents the first attempt to analyze the attack surface of physical-channel eavesdropping on embedded cameras. We characterize EM Eye--a vulnerability in the digital image data transmission interface that allows adversaries to reconstruct high-quality image streams from the cameras' unintentional electromagnetic emissions, even from over 2 meters away in many cases. Our evaluations of 4 popular IoT camera development platforms and 12 commercial off-the-shelf devices with cameras show that EM Eye poses threats to a wide range of devices, from smartphones to dash cams and home security cameras. By exploiting this vulnerability, adversaries may be able to visually spy on private activities in an enclosed room from the other side of a wall. We provide root cause analysis and modeling that enable system defenders to identify and simulate mitigation against this vulnerability, such as improving embedded cameras' data transmission protocols with minimum costs. We further discuss EM Eye's relationship with known computer display eavesdropping attacks to reveal the gaps that need to be addressed to protect the data confidentiality of sensing systems.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16917 ) )

50 Shades of Support: A Device-Centric Analysis of Android...

Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Read More

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

PANDORA: Jailbreak GPTs by Retrieval Augmented Generation Poisoning

Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)