Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Understanding the vulnerability of virtual reality (VR) is crucial for protecting sensitive data and building user trust in VR ecosystems. Previous attacks have demonstrated the feasibility of inferring VR keystrokes inside head-mounted displays (HMDs) by recording side-channel signals generated during user-HMD interactions. However, these attacks are heavily constrained by the physical layout or victim pose in the attack scenario since the recording device must be strictly positioned and oriented in a particular way with respect to the victim. In this paper, we unveil a placement-flexible keystroke inference attack in VR by eavesdropping the clicking sounds of the moving hand controller during keystrokes. The malicious recording smartphone can be placed anywhere surrounding the victim, making the attack more flexible and practical to deploy in VR environments. As the first acoustic attack in VR, our system, Heimdall, overcomes unique challenges unaddressed by previous acoustic attacks on physical keyboards and touchscreens. These challenges include differentiating sounds in a 3D space, adaptive mapping between keystroke sound and key in varying recording placement, and handling occasional hand rotations. Experiments with 30 participants show that Heimdall achieves key inference accuracy of 96.51% and top-5 accuracy of 85.14%-91.22% for inferring passwords with 4-8 characters. Heimdall is also robust under various practical impacts such as smartphone-user placement, attack environments, hardware models, and victim conditions.

View More Papers

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More

ShapFuzz: Efficient Fuzzing via Shapley-Guided Byte Selection

Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Read More