Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Understanding the vulnerability of virtual reality (VR) is crucial for protecting sensitive data and building user trust in VR ecosystems. Previous attacks have demonstrated the feasibility of inferring VR keystrokes inside head-mounted displays (HMDs) by recording side-channel signals generated during user-HMD interactions. However, these attacks are heavily constrained by the physical layout or victim pose in the attack scenario since the recording device must be strictly positioned and oriented in a particular way with respect to the victim. In this paper, we unveil a placement-flexible keystroke inference attack in VR by eavesdropping the clicking sounds of the moving hand controller during keystrokes. The malicious recording smartphone can be placed anywhere surrounding the victim, making the attack more flexible and practical to deploy in VR environments. As the first acoustic attack in VR, our system, Heimdall, overcomes unique challenges unaddressed by previous acoustic attacks on physical keyboards and touchscreens. These challenges include differentiating sounds in a 3D space, adaptive mapping between keystroke sound and key in varying recording placement, and handling occasional hand rotations. Experiments with 30 participants show that Heimdall achieves key inference accuracy of 96.51% and top-5 accuracy of 85.14%-91.22% for inferring passwords with 4-8 characters. Heimdall is also robust under various practical impacts such as smartphone-user placement, attack environments, hardware models, and victim conditions.

View More Papers

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More

Securing Lidar Communication through Watermark-based Tampering Detection (Long)

Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More