Guoming Zhang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Xinfeng Li (Zhejiang University), Gang Qu (University of Maryland), Wenyuan Xu (Zhejing University)

DolphinAttacks (i.e., inaudible voice commands) modulate audible voices over ultrasounds to inject malicious commands silently into voice assistants and manipulate controlled systems (e.g., doors or smart speakers). Eliminating DolphinAttacks is challenging if ever possible since it requires to modify the microphone hardware. In this paper, we design EarArray, a lightweight method that can not only detect such attacks but also identify the direction of attackers without requiring any extra hardware or hardware modification. Essentially, inaudible voice commands are modulated on ultrasounds that inherently attenuate faster than the one of audible sounds. By inspecting the command sound signals via the built-in multiple microphones on smart devices, EarArray is able to estimate the attenuation rate and thus detect the attacks. We propose a model of the propagation of audible sounds and ultrasounds from the sound source to a voice assistant, e.g., a smart speaker, and illustrate the underlying principle and its feasibility. We implemented EarArray using two specially-designed microphone arrays and our experiments show that EarArray can detect inaudible voice commands with an accuracy of 99% and recognize the direction of the attackers with an accuracy of 97.89%.

View More Papers

Let’s Stride Blindfolded in a Forest: Sublinear Multi-Client Decision...

Jack P. K. Ma (The Chinese University of Hong Kong), Raymond K. H. Tai (The Chinese University of Hong Kong), Yongjun Zhao (Nanyang Technological University), Sherman S.M. Chow (The Chinese University of Hong Kong)

Read More

A First Look at Scams on YouTube

Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

Read More

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More