Ioannis Demertzis (University of Maryland), Javad Ghareh Chamani (Hong Kong University of Science and Technology & Sharif University of Technology), Dimitrios Papadopoulos (Hong Kong University of Science and Technology), Charalampos Papamanthou (University of Maryland)

We study the problem of dynamic searchable encryption (DSE) with forward-and-backward privacy. Many DSE schemes have been proposed recently but the most efficient ones have one limitation: they require maintaining an operation counter for each unique keyword, either stored locally at the client or accessed obliviously (e.g., with an oblivious map) at the server, during every operation. We propose three new schemes that overcome the above limitation and achieve constant permanent client storage with improved performance, both asymptotically and experimentally, compared to prior state-of-the-art works. In particular, our first two schemes adopt a "static-to-dynamic" transformation which eliminates the need for oblivious accesses during searches. Due to this, they are the first practical schemes with minimal client storage and non-interactive search. Our third scheme is the first quasi-optimal forward-and-backward DSE scheme with only a logarithmic overhead for retrieving the query result (independently of previous deletions). While it does require an oblivious access during search in order to keep permanent client storage minimal, its practical performance is up to four orders of magnitude better than the best existing scheme with quasi-optimal search.

View More Papers

OcuLock: Exploring Human Visual System for Authentication in Virtual...

Shiqing Luo (Georgia State University), Anh Nguyen (Georgia State University), Chen Song (San Diego State University), Feng Lin (Zhejiang University), Wenyao Xu (SUNY Buffalo), Zhisheng Yan (Georgia State University)

Read More

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More

IMP4GT: IMPersonation Attacks in 4G NeTworks

David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Read More

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Read More