He Shuang (University of Toronto), Lianying Zhao (Carleton University and University of Toronto), David Lie (University of Toronto)

Web tracking harms user privacy. As a result, the
use of tracker detection and blocking tools is a common practice
among Internet users. However, no such tool can be perfect,
and thus there is a trade-off between avoiding breakage (caused
by unintentionally blocking some required functionality) and ne-
glecting to block some trackers. State-of-the-art tools usually rely
on user reports and developer effort to detect breakages, which
can be broadly categorized into two causes: 1) misidentifying
non-trackers as trackers, and 2) blocking mixed trackers which
blend tracking with functional components.

We propose incorporating a machine learning-based break-
age detector into the tracker detection pipeline to automatically
avoid misidentification of functional resources. For both tracker
detection and breakage detection, we propose using differential
features that can more clearly elucidate the differences caused by
blocking a request. We designed and implemented a prototype of
our proposed approach, Duumviri, for non-mixed trackers. We
then adopt it to automatically identify mixed trackers, drawing
differential features at partial-request granularity.

In the case of non-mixed trackers, evaluating Duumviri on 15K
pages shows its ability to replicate the labels of human-generated
filter lists, EasyPrivacy, with an accuracy of 97.44%. Through a
manual analysis, we find that Duumviri can identify previously
unreported trackers and its breakage detector can identify overly
strict EasyPrivacy rules that cause breakage. In the case of mixed
trackers, Duumviri is the first automated mixed tracker detector,
and achieves a lower bound accuracy of 74.19%. Duumviri has
enabled us to detect and confirm 22 previously unreported unique
trackers and 26 unique mixed trackers.

View More Papers

ProvGuard: Detecting SDN Control Policy Manipulation via Contextual Semantics...

Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Read More

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More

Automatic Library Fuzzing through API Relation Evolvement

Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Read More