Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Web browsers are ubiquitous and execute untrusted JavaScript (JS) code. JS engines optimize frequently executed code through just-in-time (JIT) compilation. Subtly conflicting assumptions between optimizations frequently result in JS engine vulnerabilities. Attackers can take advantage of such diverging assumptions and use the flexibility of JS to craft exploits that produce a miscalculation, remove bounds checks in JIT compiled code, and ultimately gain arbitrary code execution. Classical fuzzing approaches for JS engines only detect bugs if the engine crashes or a runtime assertion fails. Differential fuzzing can compare interpreted code against optimized JIT compiled code to detect differences in execution. Recent approaches probe the execution states of JS programs through ad-hoc JS functions that read the value of variables at runtime. However, these approaches have limited capabilities to detect diverging executions and inhibit
optimizations during JIT compilation, thus leaving JS engines under-tested.

We propose DUMPLING, a differential fuzzer that compares the full state of optimized and unoptimized execution for arbitrary JS programs. Instead of instrumenting the JS input, DUMPLING instruments the JS engine itself, enabling deep and precise introspection. These extracted fine-grained execution states, coined as (frame) dumps, are extracted at a high frequency even in the middle of JIT compiled functions. DUMPLING finds eight new bugs in the thoroughly tested V8 engine, where previous differential fuzzing approaches struggled to discover new bugs. We receive $11,000 from Google’s Vulnerability Rewards Program for reporting the vulnerabilities found by DUMPLING.

View More Papers

KernelSnitch: Side Channel-Attacks on Kernel Data Structures

Lukas Maar (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Thomas Steinbauer (Graz University of Technology), Daniel Gruss (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

QMSan: Efficiently Detecting Uninitialized Memory Errors During Fuzzing

Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Read More

I Know What You Asked: Prompt Leakage via KV-Cache...

Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Read More

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More