Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Graph Neural Networks (GNNs) are vulnerable to backdoor attacks, where triggers inserted into original graphs cause adversary-determined predictions. Backdoor attacks on GNNs, typically focusing on node classification tasks, are categorized by dirty- and clean-label attacks and pose challenges due to the interconnected nature of normal and poisoned nodes. Current defenses are indeed circumvented by sophisticated triggers and often rely on strong assumptions borrowed from other domains (e.g., rapid loss drops on poisoned images). They lead to high attack risks, failing to effectively protect against both dirty- and clean-label attacks simultaneously. To tackle these challenges, we propose DShield, a comprehensive defense framework with a discrepancy learning mechanism to defend against various graph backdoor attacks. Specifically, we reveal two vital facts during the attacking process: *semantic drift* where dirty-label attacks modify the semantic information of poisoned nodes, and *attribute over-emphasis* where clean-label attacks exaggerate specific attributes to enforce adversary-determined predictions. Motivated by those, DShield employs a self-supervised learning framework to construct a model without relying on manipulated label information. Subsequently, it utilizes both the self-supervised and backdoored models to analyze discrepancies in semantic information and attribute importance, effectively filtering out poisoned nodes. Finally, DShield trains normal models using the preserved nodes, thereby minimizing the impact of poisoned nodes. Compared with 6 state-of-the-art defenses under 21 backdoor attacks, we conduct evaluations on 7 datasets with 2 victim models to demonstrate that DShield effectively mitigates backdoor threats with minimal degradation in performance on normal nodes. For instance, on the Cora dataset, DShield reduces the attack success rate to 1.33% from 54.47% achieved by the second-best defense Prune while maintaining an 82.15% performance on normal nodes. The source code is available at https://github.com/csyuhao/DShield.

View More Papers

EAGLEYE: Exposing Hidden Web Interfaces in IoT Devices via...

Hangtian Liu (Information Engineering University), Lei Zheng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Shuitao Gan (Laboratory for Advanced Computing and Intelligence Engineering), Chao Zhang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zicong Gao (Information Engineering University), Hongqi Zhang (Henan Key Laboratory of Information Security), Yishun Zeng (Institute for Network Sciences…

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More