Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang (Microsoft Research)

Adversarial patch attacks are among the most practical adversarial attacks. Recent efforts focus on providing a certifiable guarantee on correct predictions in the presence of white-box adversarial patch attacks. In this paper, we propose DorPatch, an effective adversarial patch attack to evade both certifiably robust defenses and empirical defenses. DorPatch employs group lasso on a patch's mask, image dropout, density regularization, and structural loss to generate a fully optimized, distributed, occlusion-robust, and inconspicuous adversarial patch that can be deployed in physical-world adversarial patch attacks. Our extensive experimental evaluation with both digital-domain and physical-world tests indicates that DorPatch can effectively evade PatchCleanser, the state-of-the-art certifiable defense, and empirical defenses against adversarial patch attacks. More critically, mispredicted results of adversarially patched examples generated by DorPatch can receive certification from PatchCleanser, producing a false trust in guaranteed predictions. DorPatch achieves state-of-the-art attacking performance and perceptual quality among all adversarial patch attacks. DorPatch poses a significant threat to real-world applications of DNN models and calls for developing effective defenses to thwart the attack.

View More Papers

50 Shades of Support: A Device-Centric Analysis of Android...

Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More