Marius Steffens (CISPA Helmholtz Center for Information Security), Christian Rossow (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

The Web has become highly interactive and an important driver for modern life, enabling information retrieval, social exchange, and online shopping. From the security perspective, Cross-Site Scripting (XSS) is one of the most nefarious attacks against Web clients. Research has long since focused on three categories of XSS: Reflected, Persistent, and DOM-based XSS. In this paper, we argue that our community must consider at least four important classes of XSS, and present the first systematic study of the threat of Persistent Client-Side XSS, caused by the insecure use of client-side storage. While the existence of this class has been acknowledged, especially by the non-academic community like OWASP, prior works have either only found such flaws as side effects of other analyses or focused on a limited set of applications to analyze. Therefore, the community lacks in-depth knowledge about the actual prevalence of Persistent Client-Side XSS in the wild.

To close this research gap, we leverage taint tracking to identify suspicious flows from client-side persistent storage (Web Storage, cookies) to dangerous sinks (HTML, JavaScript, and script.src).
We discuss two attacker models capable of injecting malicious payloads into storage, i.e., a Network Attacker capable of *temporarily* hijacking HTTP communication (e.g., in a public WiFi), and a Web Attacker who can leverage flows into storage or an existing reflected XSS flaw to persist their payload. With our taint-aware browser and these models in mind, we study the prevalence of Persistent Client-Side XSS in the Alexa Top 5,000 domains.
We find that more than 8% of them have unfiltered data flows from persistent storage to a dangerous sink, which showcases the developers' inherent trust in the integrity of storage content. Even worse, if we only consider sites that make use of data originating from storage, 21% of the sites are vulnerable. For those sites with vulnerable flows from storage to sink, we find that at least 70% are directly exploitable by our attacker models. Finally, investigating the vulnerable flows originating from storage allows us to categorize them into four disjoint categories and propose appropriate mitigations.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 34 ) ) ) [post__not_in] => Array ( [0] => 4503 ) )

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Haixu Tang (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

SANCTUARY: ARMing TrustZone with User-space Enclaves

Ferdinand Brasser (Technische Universität Darmstadt), David Gens (Technische Universität Darmstadt), Patrick Jauernig (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Emmanuel Stapf (Technische Universität Darmstadt)

Read More

Quantity vs. Quality: Evaluating User Interest Profiles Using Ad...

Muhammad Ahmad Bashir (Northeastern University), Umar Farooq (LUMS Pakistan), Maryam Shahid (LUMS Pakistan), Muhammad Fareed Zaffar (LUMS Pakistan), Christo Wilson (Northeastern University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)