Marius Steffens (CISPA Helmholtz Center for Information Security), Christian Rossow (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

The Web has become highly interactive and an important driver for modern life, enabling information retrieval, social exchange, and online shopping. From the security perspective, Cross-Site Scripting (XSS) is one of the most nefarious attacks against Web clients. Research has long since focused on three categories of XSS: Reflected, Persistent, and DOM-based XSS. In this paper, we argue that our community must consider at least four important classes of XSS, and present the first systematic study of the threat of Persistent Client-Side XSS, caused by the insecure use of client-side storage. While the existence of this class has been acknowledged, especially by the non-academic community like OWASP, prior works have either only found such flaws as side effects of other analyses or focused on a limited set of applications to analyze. Therefore, the community lacks in-depth knowledge about the actual prevalence of Persistent Client-Side XSS in the wild.

To close this research gap, we leverage taint tracking to identify suspicious flows from client-side persistent storage (Web Storage, cookies) to dangerous sinks (HTML, JavaScript, and script.src).
We discuss two attacker models capable of injecting malicious payloads into storage, i.e., a Network Attacker capable of *temporarily* hijacking HTTP communication (e.g., in a public WiFi), and a Web Attacker who can leverage flows into storage or an existing reflected XSS flaw to persist their payload. With our taint-aware browser and these models in mind, we study the prevalence of Persistent Client-Side XSS in the Alexa Top 5,000 domains.
We find that more than 8% of them have unfiltered data flows from persistent storage to a dangerous sink, which showcases the developers' inherent trust in the integrity of storage content. Even worse, if we only consider sites that make use of data originating from storage, 21% of the sites are vulnerable. For those sites with vulnerable flows from storage to sink, we find that at least 70% are directly exploitable by our attacker models. Finally, investigating the vulnerable flows originating from storage allows us to categorize them into four disjoint categories and propose appropriate mitigations.

View More Papers

Measuring the Facebook Advertising Ecosystem

Athanasios Andreou (EURECOM), Márcio Silva (UFMG), Fabrício Benevenuto (UFMG), Oana Goga (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Patrick Loiseau (Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG & MPI-SWS), Alan Mislove (Northeastern University)

Read More

DNS Cache-Based User Tracking

Amit Klein (Bar Ilan University), Benny Pinkas (Bar Ilan University)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

Read More