Soheil Khodayari (CISPA Helmholtz Center for Information Security), Kai Glauber (Saarland University), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Open redirects are one of the oldest threats to web applications, allowing attackers to reroute users to malicious websites by exploiting a web application's redirection mechanism. The recent shift towards client-side task offloading has introduced JavaScript-based redirections, formerly handled server-side, thereby posing additional security risks to open redirections. In this paper, we re-assess the significance of open redirect vulnerabilities by focusing on client-side redirections, which despite their importance, have been largely understudied by the community due to open redirect's long-standing low impact. To address this gap, we introduce a static-dynamic system, STORK, designed to extract vulnerability indicators for open redirects. Applying STORK to the Tranco top 10K sites, we conduct a large-scale measurement, uncovering 20.8K open redirect vulnerabilities across 623 sites and compiling a catalog of 184 vulnerability indicators. Afterwards, we use our indicators to mine vulnerabilities from snapshots of live webpages, Google search and Internet Archive, identifying additionally 326 vulnerable sites, including Google WebLight and DoubleClick. Then, we explore the extent to which their exploitation can lead to more critical threats, quantifying the impact of client-side open redirections in the wild. Our study finds that over 11.5% of the open redirect vulnerabilities across 38% of the affected sites could be escalated to XSS, CSRF and information leakage, including popular sites like Adobe, WebNovel, TP-Link, and UDN, which is alarming. Finally, we review and evaluate the adoption of mitigation techniques against open redirections.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20018 ) )

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Towards Anonymous Chatbots with (Un)Trustworthy Browser Proxies

Dzung Pham, Jade Sheffey, Chau Minh Pham, and Amir Houmansadr (University of Massachusetts Amherst)

Read More

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)