Amit Klein (Bar Ilan University), Benny Pinkas (Bar Ilan University)

We describe a novel user tracking technique that is based on assigning statistically unique DNS records per user. This new tracking technique is unique in being able to distinguish between machines that have identical hardware and software, and track users even if they use “privacy mode” browsing, or use multiple browsers (on the same machine).
The technique overcomes issues related to the caching of DNS answers in resolvers, and utilizes per-device caching of DNS answers at the client. We experimentally demonstrate that it covers the technologies used by a very large fraction of Internet users (in terms of browsers, operating systems, and DNS resolution platforms).
Our technique can track users for up to a day (typically), and therefore works best when combined with other, narrower yet longer-lived techniques such as regular cookies - we briefly
explain how to combine such techniques.
We suggest mitigations to this tracking technique but note that it is not easily mitigated. There are possible workarounds, yet these are not without setup overhead, performance overhead or convenience overhead. A complete mitigation requires software modifications in both browsers and resolver software.

View More Papers

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More

Data Oblivious ISA Extensions for Side Channel-Resistant and High...

Jiyong Yu (UIUC), Lucas Hsiung (UIUC), Mohamad El'Hajj (UIUC), Christopher W. Fletcher (UIUC)

Read More

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More

ICSREF: A Framework for Automated Reverse Engineering of Industrial...

Anastasis Keliris (NYU), Michail Maniatakos (NYU Abu Dhabi)

Read More