Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Online guessing attacks against password servers can be hard to address. Approaches that throttle or block repeated guesses on an account (e.g., three strikes type lockout rules)
can be effective against depth-first attacks, but are of little help against breadth-first attacks that spread guesses very widely. At large providers with tens or hundreds of millions
of accounts breadth-first attacks offer a way to send millions or even billions of guesses without ever triggering the depth-first defenses.
The absence of labels and non-stationarity of attack traffic make it challenging to apply machine learning techniques.

We show how to accurately estimate the odds that an observation $x$ associated with a request is malicious. Our main assumptions are that successful malicious logins are a small
fraction of the total, and that the distribution of $x$ in the legitimate traffic is stationary, or very-slowly varying.
From these we show how we can estimate the ratio of bad-to-good traffic among any set of requests; how we can then identify subsets of the request data that contain least (or even no) attack traffic; how
these least-attacked subsets allow us to estimate the distribution of values of $x$ over the legitimate data, and hence calculate the odds ratio.
A sensitivity analysis shows that even when we fail to identify a subset with little attack traffic our odds ratio estimates are very robust.

View More Papers

Measuring the Facebook Advertising Ecosystem

Athanasios Andreou (EURECOM), Márcio Silva (UFMG), Fabrício Benevenuto (UFMG), Oana Goga (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Patrick Loiseau (Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG & MPI-SWS), Alan Mislove (Northeastern University)

Read More

Geo-locating Drivers: A Study of Sensitive Data Leakage in...

Qingchuan Zhao (The Ohio State University), Chaoshun Zuo (The Ohio State University), Giancarlo Pellegrino (CISPA, Saarland University; Stanford University), Zhiqiang Lin (The Ohio State University)

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

A Treasury System for Cryptocurrencies: Enabling Better Collaborative Intelligence

Bingsheng Zhang (Lancaster University), Roman Oliynykov (IOHK Ltd.), Hamed Balogun (Lancaster University)

Read More