Tyler Tucker (University of Florida), Nathaniel Bennett (University of Florida), Martin Kotuliak (ETH Zurich), Simon Erni (ETH Zurich), Srdjan Capkun (ETH Zuerich), Kevin Butler (University of Florida), Patrick Traynor (University of Florida)

IMSI-Catchers allow parties other than cellular network providers to covertly track mobile device users. While the research community has developed many tools to combat this problem, current solutions focus on correlated behavior and are therefore subject to substantial false classifications. In this paper, we present a standards-driven methodology that focuses on the messages an IMSI-Catcher textit{must} use to cause mobile devices to provide their permanent identifiers. That is, our approach focuses on causal attributes rather than correlated ones. We systematically analyze message flows that would lead to IMSI exposure (most of which have not been previously considered in the research community), and identify 53 messages an IMSI-Catcher can use for its attack. We then perform a measurement study on two continents to characterize the ratio in which connections use these messages in normal operations. We use these benchmarks to compare against open-source IMSI-Catcher implementations and then observe anomalous behavior at a large-scale event with significant media attention. Our analysis strongly implies the presence of an IMSI-Catcher at said public event ($p << 0.005$), thus representing the first publication to provide evidence of the statistical significance of its findings.

View More Papers

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

MingledPie: A Cluster Mingling Approach for Mitigating Preference Profiling...

Cheng Zhang (Hunan University), Yang Xu (Hunan University), Jianghao Tan (Hunan University), Jiajie An (Hunan University), Wenqiang Jin (Hunan University)

Read More

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More