Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

The potential misuse of ChatGPT and other Large Language Models (LLMs) has raised concerns regarding the dissemination of false information, plagiarism, academic dishonesty, and fraudulent activities. Consequently, distinguishing between AI-generated and human-generated content has emerged as an intriguing research topic. However, current text detection methods lack precision and are often restricted to specific tasks or domains, making them inadequate for identifying content generated by ChatGPT. In this paper, we propose an effective ChatGPT detector named DEMASQ, which accurately identifies ChatGPT-generated content. Our method addresses two critical factors: (i) the distinct biases in text composition observed in human and machine-generated content and (ii) the alterations made by humans to evade previous detection methods. DEMASQ is an energy-based detection model that incorporates novel aspects, such as (i) optimization inspired by the Doppler effect to capture the interdependence between input text embeddings and output labels, and (ii) the use of explainable AI techniques to generate diverse perturbations. To evaluate our detector, we create a benchmark dataset comprising a mixture of prompts from both ChatGPT and humans, encompassing domains such as medical, open Q&A, finance, wiki, and Reddit. Our evaluation demonstrates that DEMASQ achieves high accuracy in identifying content generated by ChatGPT.

View More Papers

EMMasker: EM Obfuscation Against Website Fingerprinting

Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

Read More

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

FirmLine: a Generic Pipeline for Large-Scale Analysis of Non-Linux...

Alexander Balgavy (Independent), Marius Muench (University of Birmingham)

Read More

TinyML meets IoBT against Sensor Hacking

Raushan Kumar Singh (IIT Ropar), Sudeepta Mishra (IIT Ropar)

Read More