Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Model pruning is a technique for compressing deep learning models, and using an iterative way to prune the model can achieve better compression effects with lower utility loss. However, our analysis reveals that iterative pruning significantly increases model memorization, making the pruned models more vulnerable to membership inference attacks (MIAs). Unfortunately, the vast majority of existing defenses against MIAs are designed for original and unpruned models. In this paper, we propose a new framework WeMem to weaken memorization in the iterative pruning process. Specifically, our analysis identifies two important factors that increase memorization in iterative pruning, namely data reuse and inherent memorability. We consider the individual and combined impacts of both factors, forming three scenarios that lead to increased memorization in iteratively pruned models. We design three defense primitives based on these factors' characteristics. By combining these primitives, we propose methods tailored to each scenario to weaken memorization effectively. Comprehensive experiments under ten adaptive MIAs demonstrate the effectiveness of the proposed defenses. Moreover, our defenses outperform five existing defenses in terms of privacy-utility tradeoff and efficiency. Additionally, we enhance the proposed defenses to automatically adjust settings for optimal defense, improving their practicability.

View More Papers

Secure Data Analytics in Apache Spark with Fine-grained Policy...

Byeongwook Kim (Seoul National University), Jaewon Hur (Seoul National University), Adil Ahmad (Arizona State University), Byoungyoung Lee (Seoul National University)

Read More

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

RACONTEUR: A Knowledgeable, Insightful, and Portable LLM-Powered Shell Command...

Jiangyi Deng (Zhejiang University), Xinfeng Li (Zhejiang University), Yanjiao Chen (Zhejiang University), Yijie Bai (Zhejiang University), Haiqin Weng (Ant Group), Yan Liu (Ant Group), Tao Wei (Ant Group), Wenyuan Xu (Zhejiang University)

Read More

Secure Transformer Inference Made Non-interactive

Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Read More