Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Binary diffing analysis quantitatively measures the differences between two given binaries and produces fine-grained basic block matching. It has been widely used to enable different kinds of critical security analysis. However, all existing program analysis and machine learning based techniques suffer from low accuracy, poor scalability, coarse granularity, or require extensive labeled training data to function. In this paper, we propose an unsupervised program-wide code representation learning technique to solve the problem. We rely on both the code semantic information and the program-wide control flow information to generate block embeddings. Furthermore, we propose a k-hop greedy matching algorithm to find the optimal diffing results using the generated block embeddings. We implement a prototype called DeepBinDiff and evaluate its effectiveness and efficiency with large number of binaries. The results show that our tool could outperform the state-of-the-art binary diffing tools by a large margin for both cross-version and cross-optimization level diffing. A case study for OpenSSL using real-world vulnerabilities further demonstrates the usefulness of our system.

View More Papers

OcuLock: Exploring Human Visual System for Authentication in Virtual...

Shiqing Luo (Georgia State University), Anh Nguyen (Georgia State University), Chen Song (San Diego State University), Feng Lin (Zhejiang University), Wenyao Xu (SUNY Buffalo), Zhisheng Yan (Georgia State University)

Read More

Decentralized Control: A Case Study of Russia

Reethika Ramesh (University of Michigan), Ram Sundara Raman (University of Michgan), Matthew Bernhard (University of Michigan), Victor Ongkowijaya (University of Michigan), Leonid Evdokimov (Independent), Anne Edmundson (Independent), Steven Sprecher (University of Michigan), Muhammad Ikram (Macquarie University), Roya Ensafi (University of Michigan)

Read More

SVLAN: Secure & Scalable Network Virtualization

Jonghoon Kwon (ETH), Taeho Lee (ETH), Claude Hähni (ETH), Adrian Perrig (ETH)

Read More

Locally Differentially Private Frequency Estimation with Consistency

Tianhao Wang (Purdue University), Milan Lopuhaä-Zwakenberg (Eindhoven University of Technology), Zitao Li (Purdue University), Boris Skoric (Eindhoven University of Technology), Ninghui Li (Purdue University)

Read More