Seunghyeon Lee (KAIST, S2W LAB Inc.), Changhoon Yoon (S2W LAB Inc.), Heedo Kang (KAIST), Yeonkeun Kim (KAIST), Yongdae Kim (KAIST), Dongsu Han (KAIST), Sooel Son (KAIST), Seungwon Shin (KAIST, S2W LAB Inc.)

The Dark Web is notorious for being a major distribution channel of harmful content as well as unlawful goods. Perpetrators have also used cryptocurrencies to conduct illicit financial transactions while hiding their identities. The limited coverage and outdated data of the Dark Web in previous studies motivated us to conduct an in-depth investigative study to understand how perpetrators abuse cryptocurrencies in the Dark Web. We designed and implemented MFScope, a new framework which collects Dark Web data, extracts cryptocurrency information, and analyzes their usage characteristics on the Dark Web. Specifically, MFScope collected more than 27 million dark webpages and extracted around 10 million unique cryptocurrency addresses for Bitcoin, Ethereum, and Monero. It then classified their usages to identify trades of illicit goods and traced cryptocurrency money flows, to reveal black money operations on the Dark Web. In total, using MFScope we discovered that more than 80% of Bitcoin addresses on the Dark Web were used with malicious intent; their monetary volume was around 180 million USD, and they sent a large sum of their money to several popular cryptocurrency services (e.g., exchange services). Furthermore, we present two real-world unlawful services and demonstrate their Bitcoin transaction traces, which helps in understanding their marketing strategy as well as black money operations.

View More Papers

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More

Profit: Detecting and Quantifying Side Channels in Networked Applications

Nicolás Rosner (University of California, Santa Barbara), Ismet Burak Kadron (University of California, Santa Barbara), Lucas Bang (Harvey Mudd College), Tevfik Bultan (University of California, Santa Barbara)

Read More

JavaScript Template Attacks: Automatically Inferring Host Information for Targeted...

Michael Schwarz (Graz University of Technology), Florian Lackner (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More