Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Online scams have become a top threat for Internet users, inflicting $10 billion in losses in 2023 only in the US. Prior work has studied specific scam types, but no work has compared different scam types. In this work, we perform what we believe is the first study of the exposure of end users to different types of online scams. We examine seven popular scam types: shopping, financial, cryptocurrency, gambling, dating, funds recovery, and employment scams. To quantify end-user exposure, we search for observations of 607K scam domains over a period of several months by millions of desktop and mobile devices belonging to customers of a large cybersecurity vendor. We classify the scam domains into the seven scam types and measure for each scam type the exposure of end users, geographical variations, scam domain lifetime, and the promotion of scam websites through online advertisements.

We examine 25.1M IP addresses accessing over 414K scam domains. On a daily basis, 149K devices are exposed to online scams, with an average of 101K (0.8%) of desktop devices being exposed compared to 48K (0.3%) of mobile devices. Shopping scams are the most prevalent scam type, being observed by a total of 10.2M IPs, followed by cryptocurrency scams, observed by 653K IPs. After being observed in the telemetry, the scam domains remain alive for a median of 11 days. In at least 9.2M (13.3%) of all scam observations users followed an advertisement. These ads are largely (59%) hosted on social media, with Facebook being the preferred source.

View More Papers

Understanding Miniapp Malware: Identification, Dissection, and Characterization

Yuqing Yang (The Ohio State University), Yue Zhang (Drexel University), Zhiqiang Lin (The Ohio State University)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More