Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Federated Learning (FL) is a promising approach enabling multiple clients to train Deep Neural Networks (DNNs) collaboratively without sharing their local training data. However, FL is susceptible to backdoor (or targeted poisoning) attacks. These attacks are initiated by malicious clients who seek to compromise the learning process by introducing specific behaviors into the learned model that can be triggered by carefully crafted inputs. Existing FL safeguards have various limitations: They are restricted to specific data distributions or reduce the global model accuracy due to excluding benign models or adding noise, are vulnerable to adaptive defense-aware adversaries, or require the server to access local models, allowing data inference attacks.

This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in FL and overcomes the deficiencies of existing techniques. It leverages clients' feedback on individual models, analyzes the behavior of neurons in hidden layers, and eliminates poisoned models through an iterative pruning scheme. CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback. The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios, including IID and non-IID data distributions. Additionally, CrowdGuard withstands adaptive adversaries while preserving the original performance of protected models. To ensure confidentiality, CrowdGuard uses a secure and privacy-preserving architecture leveraging Trusted Execution Environments (TEEs) on both client and server sides.

View More Papers

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More

When Cryptography Needs a Hand: Practical Post-Quantum Authentication for...

Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

Read More

Understanding and Analyzing Appraisal Systems in the Underground Marketplaces

Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

Read More