Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

As quantum computing rapidly advances, its near-term applications are becoming increasingly evident. However, the high cost and under-utilization of quantum resources are prompting a shift from single-user to multi-user access models. In a multi-tenant environment, where multiple users share one quantum computer, protecting user confidentiality becomes crucial. The varied uses of quantum computers increase the risk that sensitive data encoded by one user could be compromised by others, rendering the protection of data integrity and confidentiality essential.
In the evolving quantum computing landscape, it is imperative to study these security challenges within the scope of realistic threat model assumptions,
wherein an adversarial user can mount practical attacks without relying on any heightened privileges afforded by physical access to a quantum computer or rogue cloud services.
In this paper, we demonstrate the potential of crosstalk as an attack vector for the first time on a Noisy Intermediate Scale Quantum (NISQ) machine, that an adversarial user can exploit within a multi-tenant quantum computing model.
The proposed side-channel attack is conducted with minimal and realistic adversarial privileges, with the overarching aim of uncovering the quantum algorithm being executed by a victim. Crosstalk signatures are used to estimate the presence of CNOT gates in the victim circuit, and subsequently, this information is encoded and classified by a graph-based learning model to identify the victim quantum algorithm. When evaluated on up to 336 benchmark circuits, our attack framework is found to be able to unveil the victim's quantum algorithm with up to 85.7% accuracy.

View More Papers

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More