Hai Lin (Tsinghua University), Chenglong Li (Tsinghua University), Jiahai Yang (Tsinghua University), Zhiliang Wang (Tsinghua University), Linna Fan (National University of Defense Technology), Chenxin Duan (Tsinghua University)

Today, smart home platforms are widely used around the world and offer users automation to define their daily routines. However, individual automation rule anomalies and cross-automation threats that exist in different platforms put the smart home in danger. Recent researches focus on detecting these threats of the specific platform and can only cover limited threat plane. To solve these problems, we design a novel system called CP-IoT, which can monitor the execution behavior of the automation and discover the anomalies, as well as hidden risks among them on heterogeneous IoT platforms. Specifically, CP-IoT constructs a centralized, dynamic graph model for portraying the behavior of automation and the state transition. By analyzing two kinds of app pages with different description granularity, CP-IoT extracts the rule execution logic and collects user policy from different platforms. To detect the inconsistent behavior of an automation rule in different platforms, we propose a self-learning method for event fingerprint extraction by clustering the traffic of different platforms collected from the side channel, and an anomaly detection method by checking the rule execution behavior with its specification reflected in the graph model. To detect the cross-rule threats, we formalize each threat type as a symbolic representation and apply the searching algorithm on the graph. We validate the performance of CP-IoT on four platforms. The evaluation shows that CP-IoT can detect anomalies with high accuracy and effectively discover various types of cross-rule threats.

View More Papers

Exploring the Influence of Prompts in LLMs for Security-Related...

Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

Read More

WIP: Security Vulnerabilities and Attack Scenarios in Smart Home...

Haoqiang Wang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Yiwei Fang, Ze Jin, Qixu Liu (Chinese Academy of Sciences, University of Chinese Academy of Sciences, Indiana University Bloomington), Luyi Xing (Indiana University Bloomington)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More