HyungSeok Han (KAIST), DongHyeon Oh (KAIST), Sang Kil Cha (KAIST)

JavaScript engines are an attractive target for attackers due to their popularity and flexibility in building exploits. Current state-of-the-art fuzzers for finding JavaScript engine vulnerabilities focus mainly on generating syntactically correct test cases based on either a predefined context-free grammar or a trained probabilistic language model. Unfortunately, syntactically correct JavaScript sentences are often semantically invalid at runtime. Furthermore, statically analyzing the semantics of JavaScript code is challenging due to its dynamic nature: JavaScript code is generated at runtime, and JavaScript expressions are dynamically-typed. To address this challenge, we propose a novel test case generation algorithm that we call semantics-aware assembly, and implement it in a fuzz testing tool termed CodeAlchemist. Our tool can generate arbitrary JavaScript code snippets that are both semantically and syntactically correct, and it effectively yields test cases that can crash JavaScript engines. We found numerous vulnerabilities of the latest JavaScript engines with CodeAlchemist and reported them to the vendors.

View More Papers

UWB with Pulse Reordering: Securing Ranging against Relay and...

Mridula Singh (ETH Zurich, Switzerland), Patrick Leu (ETH Zurich, Switzerland), Srdjan Capkun (ETH Zurich, Switzerland)

Read More

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More

ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Distinguishing Attacks from Legitimate Authentication Traffic at Scale

Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Read More