Sirus Shahini (University of Utah), Robert Ricci (University of Utah)

Many locations, especially in urban areas, are quite noisy with WiFi traffic. In addition to data traffic, WiFi stations send management and control frames that can easily exceed several hundred frames per second just in one small area. These WiFi environments present the opportunity to transmit data through hiding it within the noise components that can be normal parts of benign transmissions.

In this paper, we show how one particular feature of WiFi, the Timing Synchronization Function (TSF), can be exploited to create a fertile and robust channel for embedding secret signals. We take advantage of the fact that there is always some degree of imprecision reflected in time synchronization of WiFi stations.

We present CHAOS, a new covert channel strategy to embed data bits in WiFi beacon frames using unmodified standard WiFi hardware. CHAOS makes use of the noise properties inherent in WiFi in two ways: First, it encodes information in the ordering of beacon frames, taking advantage of the fact that there is no natural or required ordering of beacons. Second, it makes use of a timing channel in the form of the TSF timestamp in management headers, imitating the natural imprecision of timing in real base stations to encode data in a way that is statistically similar to unmodified frames. CHAOS's parameters can be adjusted to configure data rate, the covert channel stability and frame miss rate; using our suggested settings, it is able to robustly broadcast secret data at 520 bits/s. We also show that TSF has substantial potential for further exploitation, sketching a correlation attack that uses it to map clients to base stations.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20129 ) )

Panel on “Security and Privacy Issues in New 5G...

Moderator: Arupjyoti (Arup) Bhuyan, Ph.D. Director, Wireless Security Institute, Idaho National Laboratory Panelists: Ted K. Woodward, Ph.D. Technical Director for FutureG, OUSD (R&E) Phillip Porras, Program Director, Internet Security Research, SRI Donald McBride, Senior Security Researcher, Bell Laboratories, Nokia

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

On Borrowed Time – Preventing Static Side-Channel Analysis

Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)