Adil Ahmad (Purdue University), Juhee Kim (Seoul National University), Jaebaek Seo (Google), Insik Shin (KAIST), Pedro Fonseca (Purdue University), Byoungyoung Lee (Seoul National University)

Intel SGX aims to provide the confidentiality of user data on untrusted cloud machines. However, applications that process confidential user data may contain bugs that leak information or be programmed maliciously to collect user data. Existing research that attempts to solve this problem does not consider multi-client isolation in a single enclave. We show that by not supporting such isolation, they incur considerable slowdown when concurrently processing multiple clients in different processes, due to the limitations of SGX.

This paper proposes CHANCEL, a sandbox designed for multi-client isolation within a single SGX enclave. In particular, CHANCEL allows a program’s threads to access both a per-thread memory region and a shared read-only memory region while servicing requests. Each thread handles requests from a single client at a time and is isolated from other threads, using a Multi-Client Software Fault Isolation (MCSFI) scheme. Furthermore, CHANCEL supports various in-enclave services such as an in-memory file system and shielded client communication to ensure complete mediation of the program’s interactions with the outside world. We implemented CHANCEL and evaluated it on SGX hardware using both micro-benchmarks and realistic target scenarios, including private information retrieval and product recommendation services. Our results show that CHANCEL outperforms a baseline multi-process sandbox between 4.06−53.70× on micro-benchmarks and 0.02 − 21.18× on realistic workloads while providing strong security guarantees.

View More Papers

ALchemist: Fusing Application and Audit Logs for Precise Attack...

Le Yu (Purdue University), Shiqing Ma (Rutgers University), Zhuo Zhang (Purdue University), Guanhong Tao (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University), Vincent E. Urias (Sandia National Laboratories), Han Wei Lin (Sandia National Laboratories), Gabriela Ciocarlie (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International)

Read More

More than a Fair Share: Network Data Remanence Attacks...

Leila Rashidi (University of Calgary), Daniel Kostecki (Northeastern University), Alexander James (University of Calgary), Anthony Peterson (Northeastern University), Majid Ghaderi (University of Calgary), Samuel Jero (MIT Lincoln Laboratory), Cristina Nita-Rotaru (Northeastern University), Hamed Okhravi (MIT Lincoln Laboratory), Reihaneh Safavi-Naini (University of Calgary)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

Measuring DoT/DoH Blocking Using OONI Probe: a Preliminary Study

S. Basso (Open Observatory of Network Interference)

Read More