Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Qiongxiao Wang (BeiJing Certificate Authority Co., Ltd.), Fengjun Li (The University of Kansas)

The certificate transparency (CT) framework has been deployed to improve the accountability of the TLS certificate ecosystem. However, the current implementation of CT does not enforce or guarantee the correct behavior of third-party monitors, which are essential components of the CT framework, and raises security and reliability concerns. For example, recent studies reported that 5 popular third-party CT monitors cannot always return the complete set of certificates inquired by users, which fundamentally impairs the protection that CT aims to offer. This work revisits the CT design and proposes an additional component of the CT framework, CT watchers. A watcher acts as an inspector of third-party CT monitors to detect any misbehavior by inspecting the certificate search services of a third-party monitor and detecting any inconsistent results returned by multiple monitors. It also semi-automatically analyzes potential causes of the inconsistency, e.g., a monitor’s misconfiguration, implementation flaws, etc. We implemented a prototype of the CT watcher and conducted a 52-day trial operation and several confirmation experiments involving 8.26M unique certificates of about 6,000 domains. From the results returned by 6 active third-party monitors in the wild, the prototype detected 14 potential design or implementation issues of these monitors, demonstrating its effectiveness in public inspections on third-party monitors and the potential to improve the overall reliability of CT.

View More Papers

LoRDMA: A New Low-Rate DoS Attack in RDMA Networks

Shicheng Wang (Tsinghua University), Menghao Zhang (Beihang University & Infrawaves), Yuying Du (Information Engineering University), Ziteng Chen (Southeast University), Zhiliang Wang (Tsinghua University & Zhongguancun Laboratory), Mingwei Xu (Tsinghua University & Zhongguancun Laboratory), Renjie Xie (Tsinghua University), Jiahai Yang (Tsinghua University & Zhongguancun Laboratory)

Read More

Eavesdropping on Black-box Mobile Devices via Audio Amplifier's EMR

Huiling Chen (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Wenqiang Jin (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Yupeng Hu (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Zhenyu Ning (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Kenli Li (College…

Read More

Secure Control of Connected and Automated Vehicles Using Trust-Aware...

H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

Read More

AVMON: Securing Autonomous Vehicles by Learning Control Invariants and...

Ahmed Abdo, Sakib Md Bin Malek, Xuanpeng Zhao, Nael Abu-Ghazaleh (University of California, Riverside)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)