Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Nowadays, SELinux has been widely used to provide flexible mandatory access control and security policies are critical to maintain the security of operating systems. Strictly speaking, all access requests must be restricted by appropriate policy rules to satisfy the functional requirements of the software or application. However, manually configuring security policy rules is an error-prone and time-consuming task that often requires expert knowledge. Therefore, it is a challenging task to recommend policy rules without anomalies effectively due to the numerous policy rules and the complexity of semantics. The majority of previous research mined information from policies to recommend rules but did not apply to the newly defined types without any rules. In this paper, we propose a context-aware security policy recommendation (CASPR) method that can automatically analyze and refine security policy rules. Context-aware information in CASPR includes policy rules, file locations, audit logs, and attribute information. According to these context-aware information, multiple features are extracted to calculate the similarity of privilege sets. Based on the calculation results, CASPR clusters types by the K-means model and then recommends rules automatically. The method automatically detects anomalies in security policy, namely, constraint conflicts, policy inconsistencies, and permission incompleteness. Further, the detected anomalous policies are refined so that the authorization rules can be effectively enforced.

The experiment results confirm the feasibility of the proposed method for recommending effective rules for different versions of policies. We demonstrate the effectiveness of clustering by CASPR and calculate the contribution of each context-aware feature based on SHAP. CASPR not only recommends rules for newly defined types based on context-aware information but also enhances the accuracy of security policy recommendations for existing types, compared to other rule recommendation models. CASPR has an average accuracy of 91.582% and F1-score of 93.761% in recommending rules. Further, three kinds of anomalies in the policies can be detected and automatically repaired. We employ CASPR in multiple operating systems to illustrate the universality. The research has significant implications for security policy recommendation and provides a novel method for policy analysis with great potential.

View More Papers

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More