Kazuki Nomoto (Waseda University), Takuya Watanabe (NTT Social Informatics Laboratories), Eitaro Shioji (NTT Social Informatics Laboratories), Mitsuaki Akiyama (NTT Social Informatics Laboratories), Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Modern Web services provide rich content by accessing resources on user devices, including hardware devices such as cameras, microphones, and GPSs. Web browser vendors have adopted permission mechanisms that achieve appropriate control over access to such resources to protect user privacy. The permission mechanism gives users the ability to grant or deny their browser access to resources for each website. Despite the importance of permission mechanisms in protecting user privacy, previous studies have not been conducted to systematically understand their behavior and implementation. In this study, we developed Permium, a web browser analysis framework that automatically analyzes the behavior of permission mechanisms implemented by various browsers. Using the Permium framework, we systematically studied the behavior of permission mechanisms for 22 major browser implementations running on five different operating systems, including mobile and desktop. We determined that the implementation and behavior of permission mechanisms are fragmented and inconsistent between operating systems, even for the same browser (i.e., Windows Chrome vs. iOS Chrome) and that the implementation inconsistencies can lead to privacy risks. Based on the behavior and implementation inconsistencies of the permission mechanism revealed by our measurement study, we developed two proof-of-concept attacks and evaluated their feasibility. The first attack uses the permission information collected by exploiting the inconsistencies to secretly track the user. The second attack aims to create a situation in which the user cannot correctly determine the origin of the permission request, and the user incorrectly grants permission to a malicious site. Finally, we clarify the technical issues that must be standardized in privacy mechanisms and provide recommendations to OS/browser vendors to mitigate the threats identified in this study.

View More Papers

Do Not Give a Dog Bread Every Time He...

Chongqing Lei (Southeast University), Zhen Ling (Southeast University), Yue Zhang (Jinan University), Kai Dong (Southeast University), Kaizheng Liu (Southeast University), Junzhou Luo (Southeast University), Xinwen Fu (University of Massachusetts Lowell)

Read More

Attacks as Defenses: Designing Robust Audio CAPTCHAs Using Attacks...

Hadi Abdullah (Visa Research), Aditya Karlekar (University of Florida), Saurabh Prasad (University of Florida), Muhammad Sajidur Rahman (University of Florida), Logan Blue (University of Florida), Luke A. Bauer (University of Florida), Vincent Bindschaedler (University of Florida), Patrick Traynor (University of Florida)

Read More

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

Keynote: Cybersecurity Experimentation of the Future

Jelena Mirkovic (USC Information Sciences Institute)

Read More