Daniel Perez (Imperial College London), Benjamin Livshits (Imperial College London, UCL Centre for Blockchain Technologies, and Brave Software)

Metering is an approach developed to assign cost to smart contract execution in blockchain systems such as Ethereum. This paper presents a detailed investigation of the metering approach based on emph{gas} taken by the Ethereum blockchain. We discover a number of discrepancies in the metering model such as significant inconsistencies in the pricing of the instructions. We further demonstrate that there is very little correlation between the gas and resources such as CPU and memory. We find that the main reason for this is that the gas price is dominated by the amount of emph{storage} that is used.

Based on the observations above, we present a new type of DoS attack we call~emph{Resource Exhaustion Attack}, which uses these imperfections to generate low-throughput contracts. Using this method, we show that we are able to generate contracts with a throughput on average 50 times slower than typical contracts. These contracts can be used to prevent nodes with lower hardware capacity from participating in the network, thereby artificially reducing the level of centralization the network can deliver.

View More Papers

DESENSITIZATION: Privacy-Aware and Attack-Preserving Crash Report

Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

Dynamic Searchable Encryption with Small Client Storage

Ioannis Demertzis (University of Maryland), Javad Ghareh Chamani (Hong Kong University of Science and Technology & Sharif University of Technology), Dimitrios Papadopoulos (Hong Kong University of Science and Technology), Charalampos Papamanthou (University of Maryland)

Read More

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

Into the Deep Web: Understanding E-commerce Fraud from Autonomous...

Peng Wang (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Yue Qin (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More