Lukas Aumayr (TU Wien), Pedro Moreno-Sanchez (IMDEA Software Institute), Aniket Kate (Purdue University / Supra), Matteo Maffei (Christian Doppler Laboratory Blockchain Technologies for the Internet of Things / TU Wien)

Payment channel networks (PCNs) mitigate the scalability issues of current decentralized cryptocurrencies. They allow for arbitrarily many payments between users connected through a path of intermediate payment channels, while requiring interacting with the blockchain only to open and close the channels. Unfortunately, PCNs are (i) tailored to payments, excluding more complex smart contract functionalities, such as the oracle-enabling Discreet Log Contracts and (ii) their need for active participation from intermediaries may make payments unreliable, slower, expensive, and privacy-invasive. Virtual channels are among the most promising techniques to mitigate these issues, allowing two endpoints of a path to create a direct channel over the intermediaries without any interaction with the blockchain. After such a virtual channel is constructed, (i) the endpoints can use this direct channel for applications other than payments and (ii) the intermediaries are no longer involved in updates.

In this work, we first introduce the Domino attack, a new DoS/griefing style attack that leverages virtual channels to destruct the PCN itself and is inherent to the design adopted by the existing Bitcoin-compatible virtual channels. We then demonstrate its severity by a quantitative analysis on a snapshot of the Lightning Network (LN), the most widely deployed PCN at present. We finally discuss other serious drawbacks of existing virtual channel designs, such as the support for only a single intermediary, a latency and blockchain overhead linear in the path length, or a non-constant storage overhead per user.

We then present Donner, the first virtual channel construction that overcomes the shortcomings above, by relying on a novel design paradigm. We formally define and prove security and privacy properties in the Universal Composability framework. Our evaluation shows that Donner is efficient, reduces the on-chain number of transactions for disputes from linear in the path length to a single one, which is the key to prevent Domino attacks, and reduces the storage overhead from logarithmic in the path length to constant. Donner is Bitcoin-compatible and can be easily integrated in the LN.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13217 ) )

Death By A Thousand COTS: Disrupting Satellite Communications using...

Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford) Presenter: Frederick Rawlins

Read More

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

BANS: Evaluation of Bystander Awareness Notification Systems for Productivity...

Shady Mansour (LMU Munich), Pascal Knierim (Universitat Innsbruck), Joseph O’Hagan (University of Glasgow), Florian Alt (University of the Bundeswehr Munich), Florian Mathis (University of Glasgow)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)