Lukas Aumayr (TU Wien), Pedro Moreno-Sanchez (IMDEA Software Institute), Aniket Kate (Purdue University / Supra), Matteo Maffei (Christian Doppler Laboratory Blockchain Technologies for the Internet of Things / TU Wien)

Payment channel networks (PCNs) mitigate the scalability issues of current decentralized cryptocurrencies. They allow for arbitrarily many payments between users connected through a path of intermediate payment channels, while requiring interacting with the blockchain only to open and close the channels. Unfortunately, PCNs are (i) tailored to payments, excluding more complex smart contract functionalities, such as the oracle-enabling Discreet Log Contracts and (ii) their need for active participation from intermediaries may make payments unreliable, slower, expensive, and privacy-invasive. Virtual channels are among the most promising techniques to mitigate these issues, allowing two endpoints of a path to create a direct channel over the intermediaries without any interaction with the blockchain. After such a virtual channel is constructed, (i) the endpoints can use this direct channel for applications other than payments and (ii) the intermediaries are no longer involved in updates.

In this work, we first introduce the Domino attack, a new DoS/griefing style attack that leverages virtual channels to destruct the PCN itself and is inherent to the design adopted by the existing Bitcoin-compatible virtual channels. We then demonstrate its severity by a quantitative analysis on a snapshot of the Lightning Network (LN), the most widely deployed PCN at present. We finally discuss other serious drawbacks of existing virtual channel designs, such as the support for only a single intermediary, a latency and blockchain overhead linear in the path length, or a non-constant storage overhead per user.

We then present Donner, the first virtual channel construction that overcomes the shortcomings above, by relying on a novel design paradigm. We formally define and prove security and privacy properties in the Universal Composability framework. Our evaluation shows that Donner is efficient, reduces the on-chain number of transactions for disputes from linear in the path length to a single one, which is the key to prevent Domino attacks, and reduces the storage overhead from logarithmic in the path length to constant. Donner is Bitcoin-compatible and can be easily integrated in the LN.

View More Papers

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

Towards Automatic and Precise Heap Layout Manipulation for General-Purpose...

Runhao Li (National University of Defense Technology), Bin Zhang (National University of Defense Technology), Jiongyi Chen (National University of Defense Technology), Wenfeng Lin (National University of Defense Technology), Chao Feng (National University of Defense Technology), Chaojing Tang (National University of Defense Technology)

Read More

BinaryInferno: A Semantic-Driven Approach to Field Inference for Binary...

Jared Chandler (Tufts University), Adam Wick (Fastly), Kathleen Fisher (DARPA)

Read More

WIP: Towards the Practicality of the Adversarial Attack on...

Chen Ma (Xi'an Jiaotong University), Ningfei Wang (University of California, Irvine), Qi Alfred Chen (University of California, Irvine), Chao Shen (Xi'an Jiaotong University)

Read More