George Bissias (University of Massachusetts Amherst), Brian N. Levine (University of Massachusetts Amherst)

Blockchain systems are designed to produce blocks at a constant average rate. The most popular systems currently employ a Proof of Work (PoW) algorithm as a means of creating these blocks. An unfortunate limitation of all deployed PoW blockchain systems is that the time between blocks has high variance. For example, Bitcoin produces, on average, one block every 10 minutes. However, 5% of the time, Bitcoin's inter-block time is at least 40 minutes.

In this paper, we show that high variance is at the root of fundamental attacks on PoW blockchains. We propose an alternative process for PoW-based block discovery that results in an inter-block time with significantly lower variance. Our algorithm, called _Bobtail_, generalizes the current algorithm, which uses a single PoW sample, to one that incorporates $k$ samples. We show that the variance of inter-block times decreases as $k$ increases. Bobtail significantly thwarts doublespend and selfish mining attacks. For example, for Bitcoin and Ethereum, a doublespending attacker with 40% of the mining power will succeed with 53% probability when the merchant sets up an embargo of 1 block; however, when $kgeq40$, the probability of success for the same attacker falls to less than 1%. Similarly, for Bitcoin and Ethereum currently, a selfish miner with 49% of the mining power will claim about 95% of blocks; however, when $kgeq20$, the same miner will find that selfish mining is less successful than honest mining. We also investigate attacks newly made possible by Bobtail and show how they can be defeated. The primary costs of our approach are larger blocks and increased network traffic.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 39 ) ) ) [post__not_in] => Array ( [0] => 5832 ) )

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

Encrypted DNS –> Privacy? A Traffic Analysis Perspective

Sandra Siby (EPFL), Marc Juarez (University of Southern California), Claudia Diaz (imec-COSIC KU Leuven), Narseo Vallina-Rodriguez (IMDEA Networks Institute), Carmela Troncoso (EPFL)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)