Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Outsourced computing is widely used today. However, current approaches for protecting client data in outsourced computing fall short: use of cryptographic techniques like fully-homomorphic encryption incurs substantial costs, whereas use of hardware-assisted trusted execution environments has been shown to be vulnerable to run-time and side-channel attacks.

We present BliMe, an architecture to realize efficient and secure outsourced computation. BliMe consists of a novel and minimal set of instruction set architecture (ISA) extensions implementing a taint-tracking policy to ensure the confidentiality of client data even in the presence of server vulnerabilities. To secure outsourced computation, the BliMe extensions can be used together with an attestable, fixed-function hardware security module (HSM) and an encryption engine that provides atomic decrypt-and-taint and encrypt-and-untaint operations. Clients rely on remote attestation and key agreement with the HSM to ensure that their data can be transferred securely to and from the encryption engine and will always be protected by BliMe's taint-tracking policy while at the server.

We provide an RTL implementation BliMe-BOOM based on the BOOM RISC-V core. BliMe-BOOM requires no reduction in clock frequency relative to unmodified BOOM, and has minimal power (<1.5%) and FPGA resource (≤9.0%) overheads. Various implementations of BliMe incur only moderate performance overhead (8–25%). We also provide a machine-checked security proof of a simplified model ISA with BliMe extensions.

View More Papers

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More

Private Aggregate Queries to Untrusted Databases

Syed Mahbub Hafiz (University of California, Davis), Chitrabhanu Gupta (University of California, Davis), Warren Wnuck (University of California, Davis), Brijesh Vora (University of California, Davis), Chen-Nee Chuah (University of California, Davis)

Read More

LMSanitator: Defending Prompt-Tuning Against Task-Agnostic Backdoors

Chengkun Wei (Zhejiang University), Wenlong Meng (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University), Min Chen (CISPA Helmholtz Center for Information Security), Minghu Zhao (Zhejiang University), Wenjing Fang (Ant Group), Lei Wang (Ant Group), Zihui Zhang (Zhejiang University), Wenzhi Chen (Zhejiang University)

Read More

Exploiting Sequence Number Leakage: TCP Hijacking in NAT-Enabled Wi-Fi...

Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

Read More