Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

With the rapid advancement of diffusion-based image-generative models, the quality of generated images has become increasingly photorealistic. Moreover, with the release of high-quality pre-trained image-generative models, a growing number of users are downloading these pre-trained models to fine-tune them with downstream datasets for various image-generation tasks. However, employing such powerful pre-trained models in downstream tasks presents significant privacy leakage risks. In this paper, we propose the first scores-based membership inference attack framework tailored for recent diffusion models, and in the more stringent black-box access setting. Considering four distinct attack scenarios and three types of attacks, this framework is capable of targeting any popular conditional generator model, achieving high precision, evidenced by an impressive AUC of 0.95.

View More Papers

WIP: Towards Privacy Compliance by Design in the Matter...

Yichen Liu (Indiana University Bloomington), Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Long Cheng (Clemson University), Luyi Xing (Indiana University Bloomington)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

Horcrux: Synthesize, Split, Shift and Stay Alive; Preventing Channel...

Anqi Tian (Institute of Software, Chinese Academy of Sciences; School of Computer Science and Technology, University of Chinese Academy of Sciences), Peifang Ni (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory, Beijing, P.R.China), Yingzi Gao (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jing Xu (Institute of Software, Chinese…

Read More