Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

In this paper we propose Bitcontracts, a novel solution that enables secure and efficient execution of generic smart contracts on top of unmodified legacy cryptocurrencies like Bitcoin that do not support contracts natively. The starting point of our solution is an off-chain execution model, where the contract's issuers appoints a set of service providers to execute the contract's code. The contract's execution results are accepted if a quorum of service providers reports the same result and clients are free to choose which such contracts they trust and use. The main technical contribution of this paper is how to realize such a trust model securely and efficiently without modifying the underlying blockchain.

We also identify a set of generic properties that a blockchain system must support so that expressive smart contracts can be added safely, and analyze popular existing blockchains based on these criteria.

View More Papers

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More

From WHOIS to WHOWAS: A Large-Scale Measurement Study of...

Chaoyi Lu (Tsinghua University; Beijing National Research Center for Information Science and Technology), Baojun Liu (Tsinghua University; Beijing National Research Center for Information Science and Technology; Qi An Xin Group), Yiming Zhang (Tsinghua University; Beijing National Research Center for Information Science and Technology), Zhou Li (University of California, Irvine), Fenglu Zhang (Tsinghua University), Haixin Duan…

Read More

Raising Trust in the Food Supply Chain

Alexander Krumpholz, Marthie Grobler, Raj Gaire, Claire Mason, Shanae Burns (CSIRO Data61)

Read More

Who's Hosting the Block Party? Studying Third-Party Blockage of...

Marius Steffens (CISPA Helmholtz Center for Information Security), Marius Musch (TU Braunschweig), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More