Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

We present BGP-iSec, an enhancement of the BGPsec protocol for securing BGP, the Internet's inter-domain routing protocol. BGP-iSec ensures additional and stronger security properties, compared to BGPsec, without significant extra overhead. The main improvements are: (i) Security for partial adoption: BGP-iSec provides significant security benefits for early adopters, in contrast to BGPsec, which requires universal adoption. (ii) Defense against route leakage: BGP-iSec defends against route leakage, a common cause of misrouting that is not prevented by BGPsec. (iii) Integrity of attributes: BGP-iSec ensures the integrity of revertible attributes, thereby preventing announcement manipulation attacks not prevented by BGPsec. We show that BGP-iSec achieves these goals using extensive simulations as well as security analysis. The BGP-iSec design conforms, where possible, with the BGPsec design, modifying it only where necessary to improve security. By providing stronger security guarantees, especially for partial adoption, we hope BGP-iSec will be a step towards finally protecting inter-domain routing, which remains, for many years, a vulnerability of the Internet's infrastructure.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16946 ) )

TEE-SHirT: Scalable Leakage-Free Cache Hierarchies for TEEs

Kerem Arikan (Binghamton University), Abraham Farrell (Binghamton University), Williams Zhang Cen (Binghamton University), Jack McMahon (Binghamton University), Barry Williams (Binghamton University), Yu David Liu (Binghamton University), Nael Abu-Ghazaleh (University of California, Riverside), Dmitry Ponomarev (Binghamton University)

Read More

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More

Merge/Space: A Security Testbed for Satellite Systems

M. Patrick Collins (USC Information Sciences Institute), Alefiya Hussain (USC Information Sciences Institute), J.P. Walters (USC Information Sciences Institute), Calvin Ardi (USC Information Sciences Institute), Chris Tran (USC Information Sciences Institute), Stephen Schwab (USC Information Sciences Institute)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)