Fenghao Xu (The Chinese University of Hong Kong), Wenrui Diao (Jinan University), Zhou Li (University of California, Irvine), Jiongyi Chen (The Chinese University of Hong Kong), Kehuan Zhang (The Chinese University of Hong Kong)

Bluetooth is a widely used communication technology, especially under the scenarios of mobile computing and Internet of Things. Once paired with a host device, a Bluetooth device then can exchange commands and data, such as voice, keyboard/mouse inputs, network, blood pressure data, and so on, with the host. Due to the sensitivity of such data and commands, some security measures have already been built into the Bluetooth protocol, like authentication, encryption, authorization, etc.

However, according to our studies on the Bluetooth protocol as well as its implementation on Android system, we find that there are still some design flaws which could lead to serious security consequences. For example, it is found that the authentication process on Bluetooth profiles is quite inconsistent and coarse-grained: if a paired device changes its profile, it automatically gets trust and users would not be notified. Also, there is no strict verification on the information provided by the Bluetooth device itself, so that a malicious device can deceive a user by changing its name, profile information, and icon to be displayed on the screen.

To better understand the problem, we performed a systematic study over the Bluetooth profiles and presented three attacks to demonstrate the feasibility and potential damages of such Bluetooth design flaws. The attacks were implemented on a Raspberry Pi 2 device and evaluated with different Android OS versions ranging from 5.1 to the latest 8.1. The results showed adversaries could bypass existing protections of Android (e.g., permissions, isolations, etc.), launch Man-in-the-Middle attack, control the victim apps and system, steal sensitive information, etc. To mitigate such threats, a new Bluetooth validation mechanism was proposed. We implemented the prototype system based on the AOSP project and deployed it on a Google Pixel 2 phone for evaluation. The experiment showed our solution could effectively prevent the attacks.

View More Papers

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More

Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability

Giulio Malavolta (Friedrich-Alexander University Erlangen-Nürnberg), Pedro Moreno Sanchez (TU Wien), Clara Schneidewind (TU Wien), Aniket Kate (Purdue University), Matteo Maffei (TU Wien)

Read More

Time Does Not Heal All Wounds: A Longitudinal Analysis...

Meng Luo (Stony Brook University), Pierre Laperdrix (Stony Brook University), Nima Honarmand (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More