Quan Zhang (Tsinghua University), Yiwen Xu (Tsinghua University), Zijing Yin (Tsinghua University), Chijin Zhou (Tsinghua University), Yu Jiang (Tsinghua University)

Java deserialization vulnerabilities have long been a grave security concern for Java applications. By injecting malicious objects with carefully crafted structures, attackers can reuse a series of existing methods during deserialization to achieve diverse attacks like remote code execution. To mitigate such attacks, developers are encouraged to implement policies restricting the object types that applications can deserialize. However, the design of precise policies requires expertise and significant manual effort, often leading to either the absence of policy or the implementation of inadequate ones.

In this paper, we propose DeseriGuard, a tool designed to assist developers in securing their applications seamlessly against deserialization attacks. It can automatically formulate a policy based on the application's semantics and then enforce it to restrict illegal deserialization attempts. First, DeseriGuard utilizes dataflow analysis to construct a semantic-aware property tree, which records the potential structures of deserialized objects. Based on the tree, DeseriGuard identifies the types of objects that can be safely deserialized and synthesizes an allowlist policy. Then, with the Java agent, DeseriGuard can seamlessly enforce the policy during runtime to protect various deserialization procedures. In evaluation, DeseriGuard successfully blocks all deserialization attacks on 12 real-world vulnerabilities. In addition, we compare DeseriGuard's automatically synthesized policies with 109 developer-designed policies. The results demonstrate that DeseriGuard effectively restricts 99.12% more classes. Meanwhile, we test the policy-enhanced applications with their unit tests and integration tests, which demonstrate that DeseriGuard's policies will not interfere with applications' execution and induce a negligible time overhead of 2.17%.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16867 ) )

OCPPStorm: A Comprehensive Fuzzing Tool for OCPP Implementations (Long)

Gaetano Coppoletta (University of Illinois Chicago), Rigel Gjomemo (Discovery Partners Institute, University of Illinois), Amanjot Kaur, Nima Valizadeh (Cardiff University), Venkat Venkatakrishnan (Discovery Partners Institute, University of Illinois), Omer Rana (Cardiff University)

Read More

QUACK: Hindering Deserialization Attacks via Static Duck Typing

Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Read More

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)