Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China)

Email clients that support auto-configuration mechanisms automatically retrieve server configuration information, such as the hostname, port number, and connection type, allowing users to log in by simply entering email addresses and passwords. Auto-configuration mechanisms are being increasingly adopted. However, the security implications of these mechanisms, both in terms of implementation and deployment, have not yet been thoroughly studied. In this paper, we present the first systematic analysis of security threats associated with email auto-configuration and evaluate their impacts. We summarize 10 attack scenarios, covering 17 defects (including 8 newly identified ones), along with 4 inadequate client UI notifications. These attack scenarios can either cause a victim to connect to an attacker-controlled server or establish an insecure connection, putting the victim’s credentials at risk. Moreover, our large-scale measurements and in-depth analysis revealed serious insecurity of auto-configuration applications in the wild. On the server-side, we discovered 49,013 domains, including 19 of the Top-1K popular domains, were misconfigured. On the client-side, 22 out of 29 clients were vulnerable to those threats. Moreover, 27 out of 29 clients exhibited at least one UI-notification defect that facilitates silent attacks. These defects arise from misconfiguration, mismanagement, flawed implementation and compatibility. We hope this paper raises attention to email auto-configuration security.

View More Papers

Poster: Understanding User Acceptance of Privacy Labels: Barriers and...

Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

Home Shield IoT Traffic Analyzer: A Comprehensive Analysis of...

Dhananjai Bajpai (Marquette University), Keyang Yu (Marquette University)

Read More

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More