Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Federated Learning (FL) enables the training of machine learning models using distributed data. This approach offers benefits such as improved data privacy, reduced communication costs, and enhanced model performance through increased data diversity. However, FL systems are vulnerable to poisoning attacks, where adversaries introduce malicious updates to compromise the integrity of the aggregated model. Existing defense strategies against such attacks include filtering, influence reduction, and robust aggregation techniques. Filtering approaches have the advantage of not reducing classification accuracy, but face the challenge of adversaries adapting to the defense mechanisms. The lack of a universally accepted definition of "adaptive adversaries" in the literature complicates the assessment of detection capabilities and meaningful comparisons of FL defenses.

In this paper, we address the limitations of the commonly used definition of "adaptive attackers" proposed by Bagdasaryan et al. We propose AutoAdapt, a novel adaptation method that leverages an Augmented Lagrangian optimization technique. AutoAdapt eliminates the manual search for optimal hyper-parameters by providing a more rational alternative. It generates more effective solutions by accommodating multiple inequality constraints, allowing adaptation to valid value ranges within the defensive metrics. Our proposed method significantly enhances adversaries' capabilities and accelerates research in developing attacks and defenses. By accommodating multiple valid range constraints and adapting to diverse defense metrics, AutoAdapt challenges defenses relying on multiple metrics and expands the range of potential adversarial behaviors. Through comprehensive studies, we demonstrate the effectiveness of AutoAdapt in simultaneously adapting to multiple constraints and showcasing its power by accelerating the performance of tests by a factor of 15. Furthermore, we establish the versatility of AutoAdapt across various application scenarios, encompassing datasets, model architectures, and hyper-parameters, emphasizing its practical utility in real-world contexts. Overall, our contributions advance the evaluation of FL defenses and drive progress in this field.

View More Papers

UniID: Spoofing Face Authentication System by Universal Identity

Zhihao Wu (Zhejiang University), Yushi Cheng (Zhejiang University), Shibo Zhang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejing University)

Read More

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

Facilitating Non-Intrusive In-Vivo Firmware Testing with Stateless Instrumentation

Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Read More

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More