Yue Qin (Indiana University Bloomington & Central University of Finance and Economics), Yue Xiao (Indiana University Bloomington & IBM Research), Xiaojing Liao (Indiana University Bloomington)

In privacy compliance research, a significant challenge lies in comparing specific data items in actual data usage practices with the privacy data defined in laws, regulations, or policies. This task is complex due to the diversity of data items used by various applications, as well as the different interpretations of privacy data across jurisdictions. To address this challenge, privacy data taxonomies have been constructed to capture relationships between privacy data types and granularity levels, facilitating privacy compliance analysis. However, existing taxonomy construction approaches are limited by manual efforts or heuristic rules, hindering their ability to incorporate new terms from diverse domains. In this paper, we present the design of GRASP, a scalable and efficient methodology for automatically constructing and expanding privacy data taxonomies. GRASP incorporates a novel hypernym prediction model based on granularity-aware semantic projection, which outperforms existing state-of-the-art hypernym prediction methods. Additionally, we design and implement Tracy, a privacy professional assistant to recognize and interpret private data in incident reports for GDPR-compliant data breach notification. We evaluate Tracy in a usability study with 15 privacy professionals, yielding high-level usability and satisfaction.

View More Papers

mmProcess: Phase-Based Speech Reconstruction from mmWave Radar

Hyeongjun Choi, Young Eun Kwon, Ji Won Yoon (Korea University)

Read More

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with...

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Read More

Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion...

Lingzhi Wang (Northwestern University), Xiangmin Shen (Northwestern University), Weijian Li (Northwestern University), Zhenyuan LI (Zhejiang University), R. Sekar (Stony Brook University), Han Liu (Northwestern University), Yan Chen (Northwestern University)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More